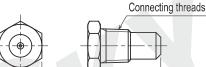


SHAPES AND DIMENSION

STRAIGHT SPRAY NOZZLES Straight Jet Nozzle-Type C

FEATURES

• when mounted on a pipe, the nozzle orifice projects inside the pipe, and is highly resistant to clogging. CL type (Long type) is higher clogging resistant.


MATERIAL

- Nozzle tip : Stainless steel, cemented carbide, ceramics, sapphire, or ruby
- Nozzle casing : Stainless steel (standard material : JIS SUS303)

APPLICATIONS

• High pressure cleaning for wire, felts, etc.

KCJ … C, KRJ … C, KSJ … C and KCEJ … C types Dimension (mm) Connecting threads Connecting Weight Mode в threads (g) 1/8 KCJ...C 12 R 1/8 15 15 1/4 KCJ…C 17 19 R 1/4 25 KCJ…C 25 17 19 M 14 KCJ ··· CL, KRJ ··· CL, KSJ ··· CL and KCEJ ··· CL types

Мо	dol	Dimensi	on (mm)	Connecting	Weight		
IVIO		B L thread		threads	(g)		
1/8 KC	J…CL	12	29	R 1/8	20		
1/4 KC	J…CL	17	29	R 1/4	40		

NPT thread is also available

STANDARD TYPE MODEL NUMBER LIST

Connecting		Model			Orifice dia.	e dia. Flow rate (ℓ /min) at following pressure (MPa)								
threads	KCJ	KRJ	KSJ	KCEJ	number	(mm)	0.3	0.5	0.7	1	2	3	4	5
1⁄8		•			0.3	0.3	0.07	0.09	0.10	0.12	0.17	0.21	0.25	0.28
					0.4	0.4	0.12	0.15	0.18	0.22	0.31	0.38	0.44	0.49
					0.5	0.5	0.19	0.24	0.29	0.34	0.48	0.59	0.68	0.77
					0.6	0.6	0.27	0.35	0.41	0.49	0.70	0.85	0.99	1.10
					0.7	0.7	0.37	0.47	0.56	0.67	0.95	1.16	1.34	1.50
					0.8	0.8	0.48	0.62	0.73	0.88	1.24	1.52	1.75	1.96
$\frac{1}{4}$			•		0.9	0.9	0.61	0.78	0.93	1.11	1.57	1.92	2.2	2.5
			•	•	1.0	1.0	0.75	0.97	1.15	1.37	1.94	2.4	2.7	3.1
			•	•	1.2	1.2	1.08	1.39	1.65	1.97	2.8	3.4	3.9	4.4
			•		1.5	1.5	1.69	2.2	2.6	3.1	4.4	5.3	6.2	6.9
			•		2.0	2.0	3.0	3.9	4.6	5.5	7.7	9.5	10.9	12.2

Flow rates are just for reference as they depend on orifice diameter.

EXAMPLE OF USE

@skyindustry